- формула Маклорена
- Mathematics: Maclaurin formula
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Маклорена ряд — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия
МАКЛОРЕНА ФОРМУЛА — частный случай Тейлора формулы. Пусть функция f(x)имеет ппроизводных в точке x=0. Тогда в нек рой окрестности Uэтой точки функцию f(x).можно представить в виде где r п (х) остаточный член n го порядка, представимый в том или ином виде. Термин М.… … Математическая энциклопедия
Эйлера-Маклорена формула — формула суммирования, связывающая частные суммы ряда с интегралом и производными его общего члена: где Bv Бернулли числа, Rn остаточный член. Э. М. ф. применяется для приближённого вычисления определённых интегралов, для… … Большая советская энциклопедия
ЭЙЛЕРА - МАКЛОРЕНА ФОРМУЛА — формула суммирования, связывающая частные суммы ряда с интегралом и производными его общего члена: где Бернулли числа, Rn остаточный член. С помощью Бернулли многочленов Bn(t), В n(0)=В п остаточный член записывается в виде: Для n=2sостаточный… … Математическая энциклопедия
Ряд Маклорена — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия
КВАДРАТУРНАЯ ФОРМУЛА — приближенная формула для вычисления определенного интеграла: в левой части стоит интеграл, подлежащий вычислению. Подинтегральная функция записана в виде произведения двух функций. Первая из них р(х)считается фиксированной для данной К. ф. и наз … Математическая энциклопедия
Дифференциальное исчисление — Исчисление бесконечно малых, включающее так называемое Д. исчисление, а также ему обратное интегральное, принадлежит к числу наиболее плодотворных открытий человеческого ума и составило эпоху в истории точных наук. Ближайшим поводом к изобретению … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Ряд Тейлора — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а… … Википедия
Многочлен Тейлора — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия
Ряд тейлора — разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды Тейлора… … Википедия
Ряды Тейлора — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия